0 Stokes Multipliers , Spectral Determinants and T - Q relations ∗

نویسنده

  • J. Suzuki
چکیده

Recently, a remarkable correspondence has been unveiled between a certain class of ordinary linear differential equations (ODE) and integrable models. In the first part of the report, we survey the results concerning the 2nd order differential equations , the Schrödinger equation with a polynomial potential. We will observe that fundamental objects in the study of the solvable models, e.g., Baxter's Q− operator, fusion transfer matrices come into play in the analyses on ODE. The second part of the talk is devoted to the generalization to higher order linear differential equations. The correspondence found in the case of the 2nd order ODE is naturally lifted up. We also mention a connection to the discrete soliton theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stokes Multipliers , Spectral Determinants and T - Q relations ∗

Recently, a remarkable correspondence has been unveiled between a certain class of ordinary linear differential equations (ODE) and integrable models. In the first part of the report, we survey the results concerning the 2nd order differential equations , the Schrödinger equation with a polynomial potential. We will observe that fundamental objects in the study of the solvable models, e.g., Bax...

متن کامل

On the relation between Stokes multipliers and the T-Q systems of conformal field theory

The vacuum expectation values of the so-called Q-operators of certain integrable quantum field theories have recently been identified with spectral determinants of particular Schrödinger operators. In this paper we extend the correspondence to the T-operators, finding that their vacuum expectation values also have an interpretation as spectral determinants. As byproducts we give a simple proof ...

متن کامل

Functional Relations in Stokes Multipliers and Solvable Models related to Uq ( A ( 1 ) n )

Recently, Dorey and Tateo have investigated functional relations among Stokes multipliers for a Schrödinger equation (second order differential equation) with a polynomial potential term in view of solvable models. Here we extend their studies to a restricted case of n + 1−th order linear differential equations. ∗e-mail: [email protected]

متن کامل

Multipliers on Spaces of Analytic Functions

In the paper we find, for certain values of the parameters, the spaces of multipliers ( H(p, q, α), H(s, t, β) ) and ( H(p, q, α), ls ) , where H(p, q, α) denotes the space of analytic functions on the unit disc such that (1 − r)Mp(f, r) ∈ Lq( dr 1−r ). As corollaries we recover some new results about multipliers on Bergman spaces and Hardy spaces. §0. Introduction. Given two sequence spaces X ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000